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The Convergence of Single-Rank 
Quasi-Newton Methods 

By C. G. Broyden 

Abstract. Analyses of the convergence properties of general quasi-Newton methods are 
presented, particular attention being paid to how the approximate solutions and the itera- 
tion matrices approach their final values. It is further shown that when Broyden's algorithm 
is applied to linear systems, the error norms are majorised by a superlinearly convergent 
sequence of an unusual kind. 

1. Introduction. During recent years certain new methods [2],[3],[4], [7],[8], 
[9], [12], have been advanced for solving simultaneous nonlinear equations, and for 
determining the unconstrained optimum of a function whose first partial derivatives 
are available as explicit expressions. We write the equations in the form 

(1.1) f(x) = 0, 

where f, x and 0 are nth order vectors, and denote f (xi) by f i, where xi is an approxi- 
mation to the solution of Eq. (1.1). Since the vector function f (x) may be a vector of 
first partial derivatives of some scalar function, the optimisation problem may in 
principle be solved in this way. 

The methods referred to involve a step vector pi which is normally computed from 
the equation 

(1.2) Pi = Hif i, 

where Hi is some as yet unspecified nth order matrix. The step vector is then scaled 
by a factor ti and the next approximation to the solution, xi, 1, is given by 
(1.3) xi+ i = xi + Piti 

The factor t, is chosen to satisfy certain requirements discussed in Section 3 (below) 
and the product piti is often referred to as a step. 

Since this product occurs frequently in the analysis, we denote it subsequently 
by si. A further simplification of notation is achieved by observing that much of the 
discussion, apart from Section 5, is concerned only with changes that occur during a 
single iteration. We therefore omit the subscript i and replace i + 1 by the subscript 
unity. 

We consider now the choice of the matrix H. If this is taken to be the inverse 
Jacobian evaluated at x, and t is set equal to unity, Eqs. (1.1)-(1.3) define Newton's 
method. This is probably the best available method if the Jacobian may be evaluated 
explicitly and a good initial estimate of the solution is known. If, however, the former 
condition is not satisfied, it is only feasible that H should approximate in some way 
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the local inverse Jacobian. In the class of methods under discussion, H1 has been 
chosen to satisfy the equation 

(1.4) H1y = s, 

where 

(1.5) y=fi-fi 

The motivation underlying this requirement is discussed more fully in [3] and [4]. 
In all the methods referred to above, the matrix H1 has been computed from H by 

adding to the latter a correction matrix of either rank one or rank two. We consider 
here only the former type of correction, which in its most general form may be written 

(1.6a) H1 = H - (Hy - s)qT/qTy, 

where q is an arbitrary nth order vector, subject only to the restriction that 

(1.6b) qTy 0 0. 

We consider, moreover, applications of algorithms of this type only to the solution 
of the linear system 

(1.7) f (x) _ Ax -b, 

where A is an nth order nonsingular matrix and b an nth order vector. Although for 
most of the algorithms discussed the final form of H is known, less is known of the 
way in which the successive values of H approach this final form and the successive 
values of x approach the solution. In particular, we are interested in those algorithms 
which ensure that some norm of the error ei, where 

(1.8) ei = xi -A-lb, 

decreases monotonically, since algorithms of this type have performed extremely well 
in practice. Finally, we prove a convergence theorem for a modification of Broyden's 
algorithm [3], when applied to linear systems, and investigate briefly how the be- 
haviour of the modified algorithm differs from that of the original. 

2. General Single-Rank Methods. In order to analyse the convergence properties 
of methods of this type when applied to the linear system (1.7), it is convenient to 
define two distinct but related matrices, each of which gives some indication of the 
discrepancy between A` and the current value of H. We define these matrices, E 
and R, by 

(2.1a) E= A-'B-I 

and 

(2.1b) R = HA - I, 

where B is defined to be H'1. Clearly, E and R are null if and only if H is the inverse 
of A, and they are related by the equation 

(2.2) I + E = (I + R). 

Now, it may readily be verified that if B is as defined above, B1 may be expressed in 
terms of B by an equation analogous to Eq. (1.6a), namely, 
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(2.3) B1 = B - (Bs - y)qTB/qTBs. 

Since, for the linear system (1.7), Eqs. (1.3) and (1.5) give 

(2.4) y = As, 

some simple manipulation involving Eqs. (1.6a), (2.1) and (2.3) then yields 

(2.5a) E1 = E(I - sqTB/qTBs) 

and 

(2.5b) R= R(I - sqTA/qTAs). 

We note that E1 and R1 are independent of the step-length since s appears in both 
the numerator and denominator of the above equations, that both are singular since 

(2.6a) E1s = 0 

and 

(2.6b) R1s = 0, 

and that the postmultiplying factors in Eqs. (2.5) are the same, except that the true 
Jacobian in Eq. (2.5b) is replaced by the current approximation in Eq. (2.5a). 

Equations (2.5) enable us to analyse the behaviour of the sequences of matrices 
{Ei} and {Rj} for particular choices of the arbitrary vector q. We shall be particularly 
interested in the distinction between methods in which the rank of E is reduced as the 
iteration proceeds and those in which some norm of E is reduced. 

A further question that must be asked about these methods concerns their stability. 
It was shown in [4] that it could be disastrous if either H or B should become singular, 
and this suggests that a desirable feature of these methods is that the condition number 
of H should be kept as small as possible. Let then 11 11 denote the spectral norm of a 
matrix, and define the condition number k( *) as the product of the spectral norm of a 
matrix and that of its inverse. We shall be interested in obtaining bounds for k(H) for 
the methods under discussion. Our initial theorem, which represents a first step in 
this direction, obtains bounds for k(H) in terms of jjEjj and jjRjj. 

THEOREM 1. Let A, H and H1 be nonsingular, where H1 and H are related by Eq. 
(1.6a), and let E and R be defined by Eqs. (2.5). If +(E), +(R) and / are defined by 

(2.7a) +(E) = max(1, 11 Ell - 1), 
(2.7b) 4(R) = max(1, Ii R iI - 1), 

and 

(2.8) tf = (1 + hlEhl)(1 + llRhl), 
then 

(2.9) k(A)/I ? k(H) < 4,k(A) 

and 
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Proof. Rearranging Eqs. (2.1) gives 

A = H1(I + R), A1 =(I + E)H, 

and taking norms and combining yields the first inequality (2.9). A similar rearrange- 
ment of Eqs. (2.1) gives 

H-1 = A(I + E), H = (I + R)A1 

which on taking norms yields the second inequality. A third arrangement of the same 
equations, with the current values replaced by the updated ones, is 

I+E1 = A-H1, I + R1 = H1A, 

so that 

(2.1 la) II + E1I ? _1A- 1111Hj1 | 

(2.1 lb) III + R1I ? _ AII II HI1I. 

We note though that E1 is singular, satisfying Eq. (2.6a), so that since 

III + E1 II (I + EI)sJ 

(2.12a) II + E1 ? 1. 

Similarly 

(2.12b) III + R1II ? 1. 

The triangle inequality, however, yields 

III + E1I ? IE111 - 1 

so that, from inequality (2.12a), 

III + El| ? /(E1). 

Since a similar result holds for R1, it follows from the inequalities (2.11) that 

k(A)k(H1) ? q(E1)q(R1), 

completing the proof. 
COROLLARY 1. k(H) is bounded above if either 

(a) ||E| <e<1 

or 

(b) R r <1. 

Proof. (a) Equation (2.2) may be rearranged to give 

(2.13) R = -(I + E)-1E, 

so that 
|R| < e/(l - e). 

Thus / ? (1 + e)/(l - e), and the result follows from Theorem 1. The proof of (b) 
is similar. 
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COROLLARY 2. k(H1) may be made arbitrarily large by making either jjE1 I1 or |R1 R 
sufficiently large. 

Proof. Since O(R1) is bounded below by unity, and O(E1) may be made arbitrarily 
large, the result follows from inequality (2.10). A similar result holds if R 1 replaces E1. 

Corollary 2 establishes that the boundedness of IIE 11 and IIRR 11 is necessary as well 
as sufficient for k(Hl) to be bounded. We note that we cannot prove a result similar 
to Corollary 2, with H. replaced by an arbitrary H, since an essential part of the proof 
is that O(R1) is bounded below, and this follows from the singularity of R1. This is 
guaranteed, since H1 is the result of a single-rank update (see Eq. (2.6b)), but will 
not in general hold for an arbitrary H. We do note, though, from the theorem, that 
k(H) is bounded if both jIEll and IIRjj are bounded, and that this sufficient condition 
is true for all H. 

In order to proceed with the discussion we next prove a simple lemma. 
LEMMA 1. If x, y are two vectors of order n such that xTy = 1, I is the unit matrix 

of order n and 

aI = _- xyT||, 

then 

Ci = jjxjlyjj. 
Proof. It is well known (see e.g. [11]) that Ca2 is the largest eigenvalue of M, where 

M = (I - xyT)T(I - xyT). Now M has n - 2 eigenvalues equal to unity whose cor- 
responding eigenvectors are any n - 2 vectors orthogonal both to one another and 
to x and y. Since xTy = 1, one of the two remaining eigenvalues is equal to zero, and 
its corresponding eigenvector is x. This leaves one eigenvalue, which we shall call A. 
Since the sum of the eigenvalues of a matrix is equal to its trace, 

A + 0 + (n - 2) = tr(M). 

However, since xTy = 1, 

tr(M) = n - 2 + jxj42jlyjI2. 

Hence A = xj2jjII'lyl2, and since by Cauchy's inequality jjXjj2jjyjj2 ? (x~y)2, it 
follows that A > 1. Thus, A is the largest eigenvalue of M, and it is therefore equal 
to c2. So, ai = l|xll IIyII and the lemma is proved. 

COROLLARY. The spectral norm of I - xyT is equal to unity if and only if x is pro- 
portional to y. 

Proof. The proof follows immediately from the use of Cauchy's inequality in 
proving Lemma 1. 

We now apply this lemma to Eqs. (2.5) and obtain 

(2.15a) ||E1 11- pjjEj 

(2.15b) ?|RI|| < OjjRjj, 

where p and 0 are defined by 

(2.16a) p = jlsjj jlqTB f/lqTBsj 

and 

(2.16b) 0 = Ijsjj jqTAlj/lqTAsi. 
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It follows immediately from Cauchy's inequality that p _ 1 and 0 _ 1 so that we 
cannot infer from Eqs. (2.15) that any reduction of the spectral norm of the error 
matrices occurs (although we shall see later that one algorithm reduces the Euclidean 
norm of E). Since we obtain the best bound for k(H1) by minimising lIE11 and IR1 11, 
we are interested in algorithms for which p = 1 and 0 = 1. From the proof of Cauchy's 
inequality, it follows that p = 1 if and only if qTB = AsT, where A is any nonzero 
scaling factor, and 0 = 1 if and only if qTA = tST, where /t is also an arbitrary nonzero 
scaling factor. Since p = st, we may obtain the two algorithms satisfying these con- 
ditions by choosing qT = pTH (p = 1) and qT = PTAi-I (0 = 1). We observe that 
the first of these give Broyden's algorithm and the second gives an algorithm that is 
not computationally realisable, since the inverse Jacobian is unknown. 

We have so far concentrated on the norms of the error matrices, and we turn now 
to their ranks. Clearly, if the rank can be reduced to zero, we have achieved the inverse 
Jacobian and are then able to obtain the exact solution of the linear equations. We 
first prove that, in general, E and R have the same rank. 

LEMMA 2. If I + E and I + R are both nonsingular, then E and R have the same rank. 
Proof. Let x be a vector satisfying the equation Ex = 0, but otherwise arbitrary. 

Then, from Eq. (2.13), Rx = 0 so that the rank of R cannot exceed that of E. We can 
similarly show, since Eq. (2.2) is symmetric in E and R, that the rank of E cannot 
exceed that of R, proving the lemma. 

Our next lemma establishes sufficient conditions to ensure the reduction of the 
ranks of E and R to zero after at most n steps. We revert, temporarily, to our original 
use of subscripts. 

LEMMA 3. Let si, i = 0, 1, ..., r - 1, be r consecutive steps, where r < n, and let 
E0 be arbitrary. If the matrices Ei+ 1, i = 0, 1, .. ., r - 1, are given by Eq. (2.5a) and 
pi and Oi, i = 0, 1, . . ., r - 1 are bounded, then sufficient conditions for Er to have 
rank not exceeding n - r, are that 

(2.17a) qTBisj = 0, 0 < j < i < r-1, 

or 

(2.17b) qTyj = 0, 0 <j < i < r-1. 

Proof. E, may, from Eq. (2.5a), be written 

(2.18a) Er = EoMr, 

where 

(2.18b) Mr = (I - sovY)(I - savj) . (I - sr- vI) 

and where vJ = qTBi/qTBisi. It follows from the definition of vJ and from Eq. (2.17a) 
that 

(2.19a) vi si = 1 

and 

(2.19b) vTs; = O. O < j < i < r-1. 

Now Eqs. (2.19) imply that the vectors Sj, 0 ? j < r - 1, are linearly independent, 
and it follows immediately from Eqs. (2.18b) and (2.19) that 
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Mrsj, 0 ?j <r-1. 

Hence, from Eq. (2.18a), 

(2.20) ErSi =0, 0 < j r-, 

and the rank of Er cannot exceed n - r, proving the first part of the lemma. To prove 
the second part, we note that a similar argument, with Eq. (2.5b) replacing Eq. (2.5a), 
establishes that if 

(2.21) qTAsj= 0, 0O< j<r r-1, 

then the rank of Rr cannot exceed n - r. The lemma then follows from Lemma 2, 
and the equation yj = Asj. 

COROLLARY. If, in Eqs. (2.17), r = n, then En is null. 
We note that, in order to prove Lemma 3, it is necessary for the vectors sj, 0 _ 

j ? r - 1 to be linearly independent. We also note though that this is the only 
property that we require of them; in particular, we do not require that they are com- 
puted using Eq. (1.2) and si = piti. 

This completes the general discussion of the properties of the error matrices. 
Before we apply these results to particular algorithms, we discuss the choice of the 
step-length parameter t. 

3. The Choice of t. This parameter is normally chosen when solving a general set 
of nonlinear equations in one of three ways: 

(1) If f is the vector of first partial derivatives of a scalar function F, it is chosen 
to minimise F along p, resulting in the relationship 

(3.1) ifTp = 0. 

(2) It is chosen to minimise or reduce f|it 
(3) It is put equal to unity. 
The reasons for these choices are as follows. Choice (1), which is only appropriate 

to minimisation problems, has two main justifications. The first, which is valid for 
any F. is that it gives the "best" improvement at each step, it being implicitly assumed 
that this is in itself desirable. The second justification concerns the case when F is 
quadratic, so that f (x) is given by 

(3.2) f (x) Ax -b, 

and where A is now assumed to be symmetric and positive definite. For the algorithms 
developed by Fletcher and Powell [8], Broyden [4], and Pearson [10], and where 
Eq. (3.2) applies, it is necessary to choose t to satisfy Eq. (3.1), in order to obtain n-step 
convergence (it being again assumed that this is in itself desirable). 

Choice (2) is made in order to obtain a monotonically decreasing sequence of 
norms of ff, in order to control the convergence of the algorithm when applied to 
strongly nonlinear systems. Unfortunately, this control may seriously inhibit con- 
vergence for at least one algorithm (see [5] and Section 5 below). It was found for this 
algorithm that choice (3) was far superior provided that good initial approximations 
both to the solution and to the Jacobian could be found. We note also, that setting 
t = 1 gives the closest resemblance to Newton's method. Because of this, and because 
choosing t to be unity has been proposed for at least two other algorithms, [2], [7], 
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we examine more closely the effects of this choice. We assume that p is computed 
using Eq. (1.2), and that f is given by Eq. (3.2), where A is now only assumed to be 
nonsingular. 

It follows from Eqs. (1.2) and (1.3) that 

(3.3) xl = x - Hf. 

Define now the vector e by 

(3.4) e = x -A-lb 

where A and b relate to Eq. (3.2). Then, from Eqs. (3.2)-(3.4), 

e = (I - HA)e, 

which becomes, from Eqs. (2.1b) and (2.2), 

(3.5a) el = -Re 

or 

(3.5b) el = (I + E)-'Ee. 

Since s is given by s = x- x, it follows from Eq. (3.4) that s = el -e so that, 
from Eq. (3.5b), 

(3.6a) Es = -e 

and from Eq. (3.5a), 

(3.6b) Rs = (I + R)el. 

We now obtain lower bounds for 11 El 11 and 11 RI 11 in terms of p and 0. Eqs. (2.5) may 
be written 

(3.7a) E1 = E - EsqTB/qTBs, 

(3.7b) R1 = R - RsqTA/qTAs, 

so that, since I1XyTI1 = ||XII IIl 

(3.8a) ||E1I| ? jjEs-qlTBIlIqTBsI-||E||, 

(3.8b) 1|R111 ? jRsj||iqTA |/jqTAsl -| R 11. 
Hence, from Eqs. (2.16) and (3.6), 

(3.9a) |JE1|| > p||eij1/||s|| - ||E|| 

(3.9b) 11R111 ? 01|(I + R)eij1j/jsIj-||R||. 

These results, together with Theorem 1, show that, if e1 is not null, then it is not 
only sufficient but also necessary for both p and 0 to be bounded, in order that k(H1) 
should be bounded. The stability of a particular algorithm is thus critically dependent 
upon the magnitude of these parameters, and since they may be readily expressed in 
terms of known quantities, they afford a simple means of analysing the stability prop- 
erties of any given algorithm. 

We now examine the dependence of the vector error el upon E and R. Writing ? 
for 11ell and a for IIEll and taking norms of Eq. (3.5) gives 
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(3.10Oa) ?1 _ IRII,? 
and, if a < 1, 

(3. 1Ob) ? ? _c-/(1 - C). 

The bound on ? -/ thus increases monotonically with 11 R 11, and with a for 0 ? a < 1. 
It follows from Eqs. (3.10) that, if the norms of E and R increase substantially, it 

is possible that the norms of subsequent vector errors may increase, and although 
this may not matter if the equations are linear, we believe that it could be serious in 
the nonlinear case since it may aggravate the effects of any nonlinearities present. 
It is, of course, always possible to prevent a large increase in the vector error norm by 
enforced residual norm reduction (choice (2) for t), but this can itself, as has been 
stated, lead to slow-convergence. 

A further difficulty caused by permitting the norms of the matrix errors to increase 
is that, particularly in n-step methods, it is possible for large but cancelling corrections 
to be added to the iteration matrix with the result that after n steps this latter may be 
the difference of two or more much "larger" matrices. This cancellation may result in 
excessive rounding errors, as has been noted by Bard [1]. 

For these reasons we believe that, if t is taken to be unity, it is desirable that the 
norms of the matrix errors should be kept as small as possible, even if this means 
sacrificing n-step convergence for linear systems. Perhaps the best way of achieving 
this ideal would be, from Eq. (3.1Oa), to choose an algorithm for which IIR1 ?1 RI 
but unfortunately such an algorithm, as was seen in the previous section, is not com- 
putationally realisable. Possibly the closest practical approximation is not to permit ax 
to increase and this, as has been seen, is in fact possible. 

4. Particular Methods. We consider now particular methods, where x is given by 

(4.1) xl = x - Hf, 

that is, where p is given by Eq. (1.2), and t is taken to be unity. The results, regarding 
the matrix error norm a derived in the previous section, are thus applicable. We note, 
however, that the restriction on the form si imposed by Eq. (4.1) is not necessary to 
establish rank-reduction. 

A. The Secant Method. In this method, [2], [12], qi is specifically chosen to satisfy 

(4.2) qyj = ? 0 j < i < n -1. 

The algorithm is thus, from Lemma 3, rank-reducing when applied to linear equations. 
We note that the directions of the vectors qj, with the exception of j = n - 1, are 

not uniquely determined, and it is thus possible for either pi or Oi to become infinite. 
If, however, qi is chosen to be the projection of yi orthogonal to yp, j = 0, 1, .. ., i -1, 

one of these possibilities does not arise. For, if we define 

(4.3) Yr = [Yo, Y1, I Yr-i], r = 1, 2, ... ,n - 1, 

(4.4a) P0 = I, 

(4.4b) P = I - Y( yT y)1yT, r = 1 2,..., n - 1, 

then Pr is symmetric, 
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(4.5) P, = P 

and qr is given by 

(4.6) qr = PrYr, 

It follows from Eqs. (2.4) and (2.16b) that Or is infinite only if qfyr = 0 and 11qr11 > 0. 
But since Pr is both symmetric and idempotent, qTyr = 0 only if YTPTPrYr = 0, 
i.e., only if PrYr = 0. But, this, from Eq. (4.6), implies that I|qr11 = 0, so that Or is 
either finite or not defined. The latter case occurs, from Eq. (4.4b) if and only if 

r- 1 

(4.7) Yr I= 
Z E 

j=O 

where the <j's are constants whose precise values are irrelevant to this analysis. Pre- 
multiplication of Eq. (4.7) by A l'then gives, since yj = Asj, 

r- 1 

(4.8) Sr = Z Si 01. 

j=O 

Now, by hypothesis qTyj = 0, 0< j < i < r -1 so that, from Eqs. (2.20) and 
(4.8), ErSr = 0, and hence, from Eq. (3.6a), er+ l = 0. It follows that qr is null and 
Hr+ 1 is not defined only if er+ 1 is null and no further iterations are necessary. 

Although this analysis shows that the ultimate catastrophe of a division by zero 
cannot occur, it is still possible for H to become arbitrarily badly conditioned in the 
course of the iteration. For, from Eq. (2.16b) it follows that if q is given by Eq. (4.6) 
then, since y = As, 

0 = ||A'lyll JjqTAA 1/yTP2y 

or 

O = IIA-lyll Jjq T A111q 12, 

and standard norm inequalities then yield 

(4.9) jjyjj1(k(A)|jqjj) < 0 ? k(A)|jyjj/jjqjj. 

Since after the first iteration P is singular, we infer from Eqs. (4.6) and (4.9) that 
jjyjj/jjqjj, and hence 0, may become arbitrarily large, so that, if el is not null, k(Hl) 
may also become arbitrarily large. 

For nonlinear equations, i usually exceeds n - 1, and qj is then chosen to satisfy 

(4.10) q Ti yj = 0, i- n+ I <j< i- 1. 

This choice of q is also apparently not entirely satisfactory, since again neither p 
nor 0 are bounded. Barnes [2] suggests carrying out the matrix update only if p, as 
defined by Eq. (2.16a), is less than 104. This would imply in the linear case that 
a, ? 10'a, and it follows from Theorem 1, Corollary 1 that k(Hl) is bounded if 
a < 10-. It follows, moreover, from Eq. (2.3) that this restriction upon p implies the 
existence, but not the nonsingularity, of the sequence of approximate Jacobians {Bi}, 
but it also follows that massive increases in a are possible and this may make the 
method unstable. 

B. The Symmetric Method. This method has been outlined by Broyden [4] and 
by Murtagh and Sargent [9]. The particular form where t is unity has been discussed 
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by Davidon [7]. It is only used if the Jacobian is known to be symmetric, e.g., iff is a 
vector of first partial derivatives, but despite its proposed application to the mini- 
misation problem, it differs fundamentally from the Davidon-Fletcher-Powell and 
Pearson [10] algorithms in that it is not necessary to satisfy Eq. (3.1), in order to 
obtain n-step convergence when f is linear. Indeed, as we shall see, if this equation 
is satisfied by the symmetric algorithm with t = 1, then immediate breakdown occurs. 

The vectors qj for the symmetric algorithm are chosen so that Hi is symmetric for 
all i, and this gives the unique value of q to be 

(4.11) q = Hy - s. 

But y = As, so that q may be written, from Eq. (2.1b), 

(4.12) q = Rs. 

We first establish that the algorithm is-rank-reducing. Eq. (2.1b) gives, since 
B =H-1 

(4.13) BR = A-B. 

But since both A and B are symmetric, it follows that BR = RTB, so that from 
Eq. (4.12), 

(4.14) qTB = sT(A - B). 
This becomes, from Eq. (2.1 a), 

(4.15) qfBr = 
_STAEr, 

(reverting temporarily to the original use of subscripts). We now proceed by induction. 
Assume that 

(4.16) qTBisj = 0O 0 < j < i _r- 1. 

Then, from Eq. (2.20), Ersj = 0, 0 < j r - 1 so that, from Eq. (4.15) 

(4.1 7) qfBrSj = 0, 0 <j r - 1, 

and Eq. (4.16) now holds with r replacing r - 1. The induction is initiated by proving 
that qfBlso = 0, and this follows immediately from Eqs. (2.6a) and (4.15). That the 
algorithm is rank-reducing now follows immediately from Lemma 3. We note that 
this result does not require that s = -Hf, but only that the sj's are linearly inde- 
pendent. 

The stability properties of the symmetric method with t = 1 are obtained from 
Eqs. (1.2), (1.5) and (4.1 1) which yield, since s =p, 

(4.18) q = Hf. 

The values of p and 0 are then given, from Eqs. (2.1 b), (2.16) and the symmetry of H, by 

(4.19a) p = - 
JSJI Ilf 1 || 11 

and 

(4.19b) 0 = IIsIIIIfT(I + R) lI I fT(I + R)sI. 

It is thus possible in the symmetric method, as in the secant method, for either p or 0 
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to become arbitrarily large. Indeed, if Eq. (3.1) is satisfied, then, from Eq. (4.19a), 
p becomes infinite and immediate breakdown occurs. This result is somewhat bizarre, 
since it is often considered desirable that Eq. (3.1) should be satisfied when minimising 
functions, and it is only for function minimisation that the symmetric algorithm has 
been seriously suggested. 

When using the symmetric algorithms for general function minimisation, Davidon 
[7] suggests that the matrix update be carried out only if certain conditions are satis- 
fied. After considerable simplification, these conditions are seen to be 

(4.20a) y ' <(1 -ac~/a) if) i>0, 

(4.20b) 1vI11 <(I- 1/) if y < 0, 

where 

(4.21) y = sTf/fT HfI 

and the arbitrary constants a and ft satisfy 

(4.22) 0 < X < 1 <. 

Now Eqs. (2.1b) and (3.9b) give Rs = HAej, and, since f1 = Ael, it follows from 
Eqs. (4.19) and (4.21) that 

(4.23a) p =11 s| | 1I f/v1 / 
and 

(4.23b) 0 = ||S|| llfl(I + R)I|+/1 + yl, 
where 

(4.23c) = fI Hf1 . 

Davidon suggested that reasonable values of a and fi might be a = 10'- and 
fi = 10, and with these values we obtain bounds for p and 0 to be, from Eqs. (4.23), 

(4.24a) p < 999.01 s|| || l III k 
(4.24b) 0 ? 0.99911s||| +T(I + R)I| y > 0, 

(4.24c) p _ 0.911sll Ilf I Aft 

(4.24d) 0? 9.Ollsllllff(I + R)I|O 
< 

It follows that, even if is bounded above, substantial increases in 11 Ell are possible 
for is > 0. Since in general it is not possible to guarantee that H is positive definite 
for the symmetric method, it follows from Eq. (4.23c) that no such bound on 0 exists, 
so that if el is not null an indefinite worsening of k(HI) is possible. 

C. BroYden's Method. In this method, [3], [5], q is given by 

(4.25) q = PTH 

and it follows immediately from Lemma 3 that the algorithm is rank-reducing if 
p[ pj = 0, i > j. This enables a good approximation to the local inverse Jacobian to 
be obtained by taking steps along the coordinate axes, although there then exists the 
possibility of instability if the initial matrix differs too much from the final approxi- 
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mation. If, however, pi is computed by Eq. (1.2), the algorithm is not rank-reducing. 
The values of p and 0 are, from Eqs. (2.1b), (2.16), and (4.25), 

(4.26a) p = 1 

and 

(4.26b) 0 = I|slI ||sT(I + R) I/IsT(I + R)sj, 

and it follows immediately that the algorithm is completely stable if ||RII < 1 or, 
from Theorem 1, Corollary 1, ||E|| < 1, since ||E11 ?< EI|. 

Of the three methods discussed, we see that if p =- Hf and t = 1, then the 
first two methods are rank-reducing and the third is not. Thus Broyden's algorithm 
will not solve linear systems in a. finite number of steps and this has been held to be 
a disadvantage of the method. On the other hand, the basic forms of the other al- 
gorithms have also been found wanting [2], [7], and the effect of the proposed modifi- 
cations is to weaken their rank-reducing character. A disturbing feature of these 
algorithms is the fact that these modifications may be necessary, no matter how small 
IIEll may become. This means that, in their basic forms, these algorithms can convert 
a good approximation to the inverse Jacobian into a poor one, with all the implications 
discussed in Section 3, and this behaviour is in marked contrast to Broyden's algorithm 
which becomes more stable as IIEll tends to zero. Whether or not their rank-reducing 
character is more effective in solving nonlinear systems than the norm-reducing and 
asymptotically stable character of Broyden's method, is at the moment open to con- 
jecture. We look to extensive numerical experiment and more sophisticated theory to 
provide the ultimate resolution of this question. 

5. Further Properties of Broyden's Method. In the method as proposed by Broyden 
[3], the step length parameter t was chosen to satisfy the second condition of Section 3 
(above). We first prove a convergence theorem for the modification of this method 
given by choosing t = 1, and then discuss less formally in Section 6 the effect of 
choosing t to reduce f 11 Before proving the theorem though, we prove the following 
lemma. 

LEMMA 4. If E is an n x n matrix and x, y are two vectors of order n, then 

||E + xyT | = ||E 112 + 2yTETx + ||X 12 Iy 2, 

where the subscript E denotes the Euclidean matrix norm. 
Proof 

||E + xyT | 2 
= tr[(E + xyT)T (E + xyT)] 

= tr(ETE + ETXyT + yXTE + yxTxyT) 

= tr(ETE) + tr(ETxyT) + tr(yxT E) + tr(yxTxyT) 

= I1E 112 + 2yTETx + yTyxTX 

= ||E 112 + 2yTETx + ||yI||2 X I2. 

THEOREM 2. If Broyden's algorithm is applied to the linear system (3.2), pi = -Hif i, 
ti is unity and 0o < 1, then the Euclidean norm Er of the rth error vector satisfies the 
inequality 
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(5.1) C_ < (k/r 1/2)rro, 

where k is a constant depending upon E0. 
Proof. If the value of qi given by Eq. (4.25) is substituted in Eq. (2.5a), we obtain 

(5.2) Ei+ 1 = Ei - EipipT/P Pi, 

so that, from Lemma 4, 

(5.3) 44+1 = I 

where Oi denotes the Euclidean norm of Ei. Now, Eqs. (1.3) and (1.8) yield, since 
ti= 1, 

Pi = ei+1 -e, 

and Eq. (3.5b) may be rearranged to give 

e+-je- = -(I + Ei)flej, 

so that, if oi < 1, 

(5.4) Pill E d/(1 - vi). 

Since si = pi Eq. (3.6a) may be written 

(5.5) Eipi = -ei + 1 

and combining Eqs. (5.4) and (5.5) with (5.3), finally yields the inequality 

(5.6) 44i2 < O? - C2 +(l - U,)2/ey 

We now consider the vector error norms. Since vi < Oi (see e.g. [I1]), it follows 
from inequality (3.10b) that 

(5.7) E2 < ?4+(1 - = 

and we convert this inequality into an equation by introducing a parameter Oi such 
that 

(5.8) C2= 0 /(1 - )2. 

It follows immediately that 

(5.9) ? < Oi < 1. 

Combining Eqs. (5.6) and (5.8) gives 

i2 1 < (1 1-_i)O? 

so that 

(5.10) 4r < H (1 - Or- j), 1. 

Now the values of ai decrease monotonically, so that ai _ co, i > 1 and hence, 
from Eq. (5.8), 

(5.11) E+ < O4rI4/(1 - Uo)2. 
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We now show that 

(5.12) 82 < k2r'o H Pj(O2j) 
jl 

where 

k = o/(1 -o) 

and 

(5.13) PJ{0) 0(1 - 0f-' 

The proof is by induction. Assume that Eq. (5.12) holds for r. Then from Eqs. 
(5.10)-(5.12) it follows that 

r 
g+ I< k 2(r+l)go H [(1 - 0r~j)Pj{0r-j)] 

jl 

This equation may be written, from Eq. (5.13), 

r 
2 <2(r+ 1)k2p() H Pj+i(0r-j) 

j=1 

and, on putting i = j + 1, it becomes 
r+ 1 

Er+1 < k2(r '2 H Pi(Or+ I-i), 
i=2 

being thus Eq. (5.12), with r replaced by r + 1. It suffices now to show that Eq. (5.12) 
is true for r = 1, and this is done merely by setting i = 0 in Eq. (5.11). 

It now remains to obtain an upper bound for the product of the polynomials ap- 
pearing in Eq. (5.12). We do this by assuming that the Or-j are independent and 

finding the maximum value of each factor in the product, subject only to the condition, 
given by Eq. (5.9), that 0 ? 0 ? 1. On examining Eq. (5.13), we see that Pj{0) has a 

simple zero at 0 = 0 and a zero of order j- 1 at 0 = 1. Differentiation gives a maxi- 

mum at 0 = 1/j, j _ 2, for which the value of Pj(O) is (j - ir- '/f. The maximum 

value of P1(0), 0 _ 0 ? 1, is clearly unity. Substituting these maximum values in 

Eq. (5.12) gives 

?2 < k 2rE2/Rrr 

and, taking square roots, yields the theorem. 

We note the following features of the algorithm that emerge from the above proof. 
From Eq. (3.10b), we see that strictly monotonic convergence, i.e., Ei+ 1 < Ei for all 

i > 0, is guaranteed provided that ao < . The algorithm, however, converges if 

ao < 1. Although the vector error may become arbitrarily small, there is no guarantee 
that Hi will tend to A-, since it is possible that an exact solution may be obtained, 
no matter how large ai might be. This is reinforced by Eq. (5.6), which shows that a 

minimal improvement in the vector error is associated with a maximal improvement 
in the matrix error, and conversely. 

If, on the other hand, H does approach A 1, so that a and IIR 11 are small, we may 

infer that the correction added to H is small in norm, from the fact that a, < v. A 
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precise bound may be obtained simply as follows. If we write H1 = H + C, it fol- 
lows from Eqs. (1.6a), (4.25) and s = p that 

(5.14) C = (Hy - s)sTH/sTHy. 

This becomes, from Eqs. (2.lb) and (2.4) 

C = RssTH/sT(I + R)s, 

so that, if ||R|| < 1, 

(5.15) 11Cjj/|jHIj ? jjRj/(1 - jjR|j). 

This result shows that, as H approaches A- I, the corrections to H become relatively 
small. The massive cancellations described by Bard-[1] thus cannot occur, and we 
also infer that errors in the correction term due to rounding have no appreciable 
effect. We would thus expect this particular matrix update to be extremely stable as 
the solution is approached, and this expectation has been abundantly realised in 
practice. 

Although no tests have been carried out with the algorithm on linear systems, the 
convergence observed during the final stages of solving a nonlinear problem, when 
the Jacobian may be regarded as being substantially constant, has certainly been in 
accordance with Eq. (5.1). Further discussion of the convergence of the algorithm, 
with results of numerical experiments, may be found in [5]. 

6. Some Effects of Enforced Residual Norm Reduction. The results we obtain in 
this section are valid for all algorithms for which the step direction p is given by 
p = -Hf. They are thus applicable to all three algorithms discussed in Section 4 
(above). 

It follows immediately from Eq. (3.10b) that, if t = 1, a sufficient condition for 
e < ? is that a < a. To obtain a similar result for If 11, we note from Eqs. (3.2), 
(3.4) and (3.5b) that 

(6.1) fl = AE(I + E)-'A-f 

so that, if a < 1, 

(6.2) IKf II < k(A)llfII/(l - a). 

It follows that I[flII < jlf j, with t = 1, if 

(6.3) a < 1/(1 + k(A)). 

This is clearly, since k(A) > 1, a greater restriction than a < a, to which it re- 
duces in the optimum case when k(A) = 1. 

Despite the fact that Eq. (6.3) is not a necessary condition, it is possible to construct 
examples for which 

(6.4) 1/(I + k(A)) < a < A 

and for which the step with t = 1 reduces Ileli but increases f 11. Thus, in these cases, 
enforced residual norm reduction has a positive effect, despite the fact that without 
its use the vector error norm is reduced. To analyse this effect, we consider the function 
f (t), where 
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(6.5a) f (t) = Ax -b, 

(6.5b) x = xi -Hiit 

and A is nonsingular (to avoid confusion, we return to the use of subscripts to denote 
particular values of the variables). The function lf (t) 112 is thus a strictly convex 
quadratic function of t, and, in consequence, possesses a unique minimum. Now 
Eqs (6.5) give 

(6.6) f (t) (I - tAHi)f i, 

so that 

(6.7) ijft)j - 2(tffHiTATAHifi - fT AHifj). 

Thus, from Eq. (2.1b) 

(6.8) [dj jf(t)jj2/dt]t=O = -2fT(I + AR-A1)fi, 

and if 

(6.9) iiARiA'll < 1, 

it follows that [d jf(t) j21dt]t=o will be negative. Hence, it is possible to reduce or 
minimise 11 f 11 by choosing a positive value of t if 

(6.10) IIRXII < 11k(A), 

since this implies inequality (6.9). 
To analyse the behaviour of the vector errors, we note that e(t) = A -f(t) so 

that, from Eqs. (2. lb) and (6.6), 

(6.11) e(t) = [I - t(I + Ri)]ei. 

A similar calculation to that for f(t) then yields 

(6.12) [dI|e(t)||2/dt]t=o = -2eT(I + Ri)ei, 

so that a sufficient condition for a positive value of t to reduce or minimise 11 e(t)|1 is that 

(6.13) I|Ri t < 1. 

Now, if Eq. (6.10) is satisfied, then so is Eq. (6.13), and enforced residual norm re- 
duction does in fact reduce the error norms, although perhaps by not as much as 
would be achieved by letting t = 1. It is, however, possible for Eq. (6.13) to be satis- 
fied but not Eq. (6.10). Now (6.10) is a sufficient condition, but examples may be con- 
structed, where 

(6.14) 1/k(A) < jjRilj < 1, 

and where [dit f(t)|I 2/dt]t=o is positive. 
Thus, in order to reduce or minimise 11 f 11 in this case, a negative value of t must be 

chosen, but since IiRiI| < 1, this implies, since I|e(t)II is strictly convex, that ||ell must 
increase. Under these circumstances, one would expect enforced residual norm reduc- 
tion to inhibit convergence, and experimental evidence reported in [5] shows that 
this does indeed occur when using Broyden's algorithm. Neither must it be assumed 
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that this phenomenon can only occur if Hi is a very poor approximation to A-, for 
this condition is specifically excluded by the requirement that II Rill < 1. We are thus 
faced with the dilemma that a technique used to prevent divergence when a long way 
from the solution may inhibit convergence when close to it, and there is no obvious 
way of detecting the transition from the one state to the other. It is for this reason that 
continuation methods, which go back to Davidenko [6] and earlier, may well assume 
a more prominent position in the array of techniques for solving nonlinear simul- 
taneous equations, since these methods involve solving a sequence of problems, where 
a good initial estimate of the solution is available for each problem in the sequence. 
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